求摆线x=a(t-sint),y=a(1-cost),0≤t≤2π.与x轴所围成图形绕y轴旋转

2025-01-24 08:55:43
推荐回答(3个)
回答1:

首先取体积微元,在x=a(t-sint)处,x变化量为dx,形成的圆环面积为:dS=2πxdx

圆环所在柱面体积:dV=ydS=2πxydx

又dx=d[a(t-sint)]=a(1-cost)dt

S=∫[0≤t≤2π]a(1-cost)d[a(t-sint)]

=a²∫[0,2π]{(1-cost)²}dt

=a²[t+t/2+(sin2t)/4+2sint]|[0,2π]值差

=3a²π(面积单位)

基本原理

摆线针轮行星传动中,摆线轮齿廓曲线运用内啮合发生圆产生的短幅外摆线。

有一发生圆(滚圆)半径为rp',基圆半径为rc',基圆内切于发生圆,当发生圆绕基圆作纯滚动,其圆心Op分别处于Op1、Op2、Op3、Op4、Op5、Op6......各位置时,由此固结在发生圆平面上的点M分别经过M1、M2、M3、M4、M5、M6......各位置,由此发生圆周期滚动,发生圆上点M所形成的轨迹曲线即为短幅外摆线。

回答2:

先画草图,再求积分,答案如图所示

回答3:

 
 首先取体积微元,在x=a(t-sint)处,x变化量为dx,形成的圆环面积为:
dS=2πxdx,
圆环所在柱面体积:dV=ydS=2πxydx
又dx=d[a(t-sint)]=a(1-cost)dt
将x,y参数方程代入得:
dV=2π[a(t-sint)][a(1-cost)][a(1-cost)dt]=2πa3(t-sint)(1-cost)2dt
∴V=


0

2πa3(t−sint)(1−cost)2dt
作变换u=t-π,则 t=u+π,dt=du,
原积分变为:
V=

π
−π

2πa3[(u+π)−sin(u+π)]•[1−cos(u+π)]2du
=2πa3

π
−π

[π+(u+sinu)](1+cosu)2du
=2π2a3

π
−π

(1+cosu)2du+
2πa3∫
π
−π

(u+sinu)(1+cosu)2du
上式积分的第二部分被积函数 (u+sinu)(1+cosu)2为奇函数,因此在[-π,π]上,积分为0
∴V=2π2a3

π
−π

(1+cosu)2du=2π2a3

π
−π

(1+2cosu+cos2u)du
=4π2a3+4π2a3

π
−π

cosudu+π2a3

π
−π

(1+cos2u)du
=4π2a3−4π2a3sinu
|
π
−π

+2π2a3−
1
2
π2a3sin2u
|
π
−π

=6π2a3