∴-x0-1=lnx0
∴f(x0)=-x0lnx0/(1+x0)=x0
②f(x0)=x0正确
f(x0)-1/2
=-x0lnx0/(1+x0)-1/2
=[-2x0lnx0-(1+x0)]/(2(1+x0)
∵-x0-1=lnx0
∴[-2x0lnx0-(1+x0)]/(2(1+x0))
=lnx0(1-2x0)/(2(1+x0))。。。。。。。1式
x=1/2时,f'(1/2)=-(3/2+ln1/2)/(9/4)
ln1/2=-ln2>-lne=-1
∴f'(1/2)<-(1/2)/(9/4)<0=f'(x0)
∴x0在x=1/2左侧
∴x0<1/2
∴1-2x0>0
∴1式<0
∴f(x0)<1/2
∴②④正确