∵π/2∴π/4∴sin[a-(b/2)]>0,cos[(a/2)-b]>0.∵cos[a-(b/2)]=-1/9,sin[(a/2)-b]=2/3,∴sin[a-(b/2)]=4√5/9,cos[(a/2)-b]=√5/3.∴cos(a+b)=cos[(a-b/2)-(a/2 -b)]=cos(a-b/2)cos(a/2-b)-sin(a-b/)sin(a/2-b)=-(1/9)*√5/3-4√5/9*2/3=-√5/3sin(a+b)=±√[1-cos²[(a+b)]=±√[1-(-√5/3)^2]=±2/3tan(a+b)/2=[sin(a+b)/2] / [cos(a+b)/2]=[2sin(a+b)/2 * cos(a+b)/2]/[2cos(a+b)/2 * cos(a+b)/2]=[sin(a+b)]/[cos(a+b) +1]=[±2/3]/[-√5/3 +1]=±2/[3-√5]=±2(3+√5)/(3+√5)(3-√5)=±(3+√5)/2