1,1/(1+2),1/(1+2+3),1/(1+2+3+4),……,1/[1+2+3+……+n]
∵1+2+3+......+n=(n+1)*n/2
∴通项an=1/(1+2+3+....+n)=2/[n(n+1)]=2[1/n-1/(n+1)]
∴该数列的前n相的和
Sn=1+1/(1+2)+1/(1+2+3)+1/(1+2+3+4)+……+1/[1+2+3+……+n]
=2[1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+......+1/n-1/(n+1)]
=2[1-1/(n+1)]
=2n/(n+1)
S2013=2013/1007
该数列的通项公式为2/(n(n+1))
所以SN=2(1/(1*2)+1/(2*3)+……+1/(n(n+1)))
=2(1-1/(n+1))
=2n/(n+1)
=4026/2014
=2013/1007
货到付款离开的
(1+2+3+..+n) = n(n+1)/2
1/(1+2+3+...+n) = 2/(n(n+1)) = 2(1/n - 1/(n+1))
求该数列的前n相的和:1,1/(1+2),1/(1+2+3),1/(1+2+3+4),……,1/[1+2+3+……+n)
=1+2(1/2-1/3+1/3-1/4+1/4-.......-1/(n+1))
=1+2(1/2-1/(n+1))
=2-2/(n+1)
代入n=2013
院士=2-2/2014=2-1/1007
谁出这么简单的题哦