解:
∵sinа=-3/5,α∈(π,3/2π)
∴cosa=-√[(1-(-3/5)²]=-4/5
∵cos(α+β)=5/13,β∈(0,π/2)
∴sin(α+β)=-√[(1-(5/13)²]=-12/13
sinβ=sin[(α+β)-α]
=sin(α+β)cosa-cos(α+β)sinа
=-12/13*(-4/5)-5/13*(-3/5)
=48/65+15/65
=63/65
cosα=4/5
cos(α+β)=cosαcosβ-sinаsinβ=4cosβ/5+3sinβ/5=5/13
cosβ=25/52-3sinβ/4
cosβ^2=(25/52-3sinβ/4)^2=1-sinβ^2
25sinβ^2/4-75sinβ/26-27/13=0
sinа=-3/5
∵α∈(π,3/2π)
∴cosα=√1-(3/5)²=-4/5
∵π<a<3/2π
0<β<π/2
π<α+β<2π
∴sin(α+β)=√1-(5/13)²=-12/13
sinβ=sin[(α+β)-β]
=sin(α+β)cosα-cos(α+β)sinα
=-12/13×(-4/5)-5/13×(-3/5)
=63/65