x+1∕x=3
平方,得
x²+2+1/x²=9
x²+1/x²=7
所以
x^2∕x^4+x^2+1
=1/(x²+1+1/x²)
=1/(7+1)
=1/8
解:∵x+1/x=3
∴ ﹙x+1/x﹚²=3²
x²+1/x²=7
∵ ﹙x^4+x²+1﹚/x²
=x²+1+1/x²
=7+1
=8
∴ x²/﹙x^4+x²+1﹚=1/8.
显然x不等于0,故x^2/(x^4+x^2+1)=1/(x^2+1+1/x^2)
x+1/x=3左右两边同时平方,
x^2+1/x^2+2x*1/x=9
x^2+1/x^2=7
代入原式,则x^2/(x^4+x^2+1)=1/(x^2+1+1/x^2)=1/(7+1)=1/8
已知x+1∕x=3,
∴x²+1∕x²+2=9
x²+1∕x²=7
,
∴x^2∕x^4+x^2+1=x²+1∕x²+1=
=7+1=8