已知1⼀x+1⼀y=3,求(x+2xy+y)⼀(2x-3xy+2y) 的值

2025-01-04 02:28:28
推荐回答(3个)
回答1:

1/x+1/y=(y+x)/xy=3
所以x+y=3xy

原式=[(x+y)+2xy]/[2(x+y)-3xy]
=[(3xy)+2xy]/[2(3xy)-3xy]
=5xy/3xy
=5/3

回答2:

(x+2xy+y)/(2x-3xy+2y) 分子分母同除xy得:
=(1/y+2+1/x)/(2/y-3+2/x)
=(1/x+1/y+2)/(2(1/x+1/y)-3)
=(3+2)/(2*3-3)
=5/3

不懂可追问
满意请采纳
谢谢

回答3:

1/x+1/y=3,
x+y=3xy

(x+2xy+y)/(2x-3xy+2y)
=(3xy+2xy)/(6xy-3xy)
=5/3