结果为:K=3
解题过程如下:
∵x^k
∴lim(x-tanx)/x^k
=lim(1-sec^2x)/kx^(k-1)
=lim(c0s^2x-1)/kx^(k-1)
=lim(-2cosxsinx)/(k(k-1)x^(k-2)
=lim(-2sinx)/(k(k-1)x^(k-2)
∴K=3
无穷小判定方法:
1、无穷小量不是一个数,它是一个变量。
2、零可以作为无穷小量的唯一一个常量。
3、无穷小量与自变量的趋势相关。
4、恒不为零的无穷小量的倒数为无穷大,无穷大的倒数为无穷小。
5、有限个无穷小量之和仍是无穷小量。
6、有限个无穷小量之积仍是无穷小量。
7、有界函数与无穷小量之积为无穷小量。
8、特别地,常数和无穷小量的乘积也为无穷小量。
要用x^k
lim(x-tanx)/x^k
=lim(1-sec^2x)/kx^(k-1)
=lim(c0s^2x-1)/kx^(k-1)
=lim(-2cosxsinx)/(k(k-1)x^(k-2)
=lim(-2sinx)/(k(k-1)x^(k-2)
K=3
3阶