(3+1)(3²+1)(3^4+1)(3^8+1)(3^16+1);先乘以2,然后再除以2
=(3-1)(3+1)(3²+1)(3^4+1)(3^8+1)(3^16+1)/2
=(3^32-1)/2
=926510094425920
解:
(3+1)(3^2+1)(3^4+1)(3^8+1)(3^16+1)
=(3-1)(3+1)(3^2+1)(3^4+1)(3^8+1)(3^16+1)/(3-1)
=(3^2-1)(3^2+1)(3^4+1)(3^8+1)(3^16+1)/2
=(3^4-1)(3^4+1)(3^8+1)(3^16+1) /2
=(3^8-1)(3^8+1)(3^16+1)/2
=(3^16-1)(3^16+1)/2
=(3^32-1)/2
我靠!在算式(3+1)(3^2+1)(3^4+1)(3^8+1)(3^16+1)前乘以(3-1)
(3+1)(3^2+1)(3^4+1)(3^8+1)(3^16+1)
=[(3-1)(3+1)(3^2+1)(3^4+1)(3^8+1)(3^16+1)]/2
=(3^32-1)/2