设u=f(x,y,z),φ(x^2,e^y,z)=0,y=sinx,其中f,φ有一阶连续偏导数,且&φ⼀&z ≠ 0,求du⼀dx

2024-12-30 21:48:20
推荐回答(1个)
回答1:

φ(x^2,e^y,z)=0:
2 x φ'1+cosxe^yφ‘2+z'φ'3=0
=>z'=-[2 x φ'1+cosxe^(sinx)φ‘2] / φ'3
du/dx=f'1+cosx f'2+z' f'3
=f'1+cosx f'2-{[2 x φ'1+cosxe^(sinx)φ‘2] / φ'3} f'3