求证:3+cos4α-4cos2α=8sin^4α

需要过程,谢谢
2024-12-31 15:47:26
推荐回答(1个)
回答1:

cos4α=1-2(sin2α)^2=1-8(sinα)^2*(cosα)^2=1-8(sinα)^2*[1-(sinα)^2]
=8(sinα)^4-8(sinα)^2+1

而4cos2α+8(sinα)^4-3
=4[1-2(sinα)^2]+8(sinα)^4-3=8(sinα)^4-8(sinα)^2+1
所以cos4α=4cos2α+8(sinα)^4-3
即3+cos4α-4cos2α=8sinα^4