1、x³+2x²+2012=x(x²+x-1)+(x²+x-1)+1+2012=2013
2、x²-5x=6,则(x-2)(x-3)=12;(x-1)(x-4)=10;(x-1)(x-2)(x-3)(x-4)=120。
3、-xy[x³(y^7)-3x²(y^5)-5y]=-xy[(xy²)³y-(xy²)²3y-5y]=-xy(-216y-108y-5y)=-xy(-329y)=329xy²=-1974
因为:x²+x-1=0,x³+2x²+2012可分解为X*(x²+x-1)+x²+x-1+2013,所以得数为2013
因为x²-5x=6,(x-1)(x-2)(x-3)(x-4)分解成(x-1)(x-4)(x²-5x-6)=0