欧拉定理是一个关于同余的性质。欧拉定理得名于瑞士数学家莱昂哈德·欧拉,该定理被认为是数学世界中最美妙的定理之一。
欧拉定理实际上是费马小定理的推广。此外还有平面几何中的欧拉定理、多面体欧拉定理(在一凸多面体中,顶点数-棱边数+面数=2)。西方经济学中欧拉定理又称为产量分配净尽定理,指在完全竞争的条件下,假设长期中规模收益不变,则全部产品正好足够分配给各个要素。
扩展资料
欧拉定理指出,在市场均衡条件下,如果产品市场和要素市场是完全竞争的,制造商生产的规模报酬不变,各生产要素实际获得的报酬总额,与社会生产的产品总额完全相等。这个定理又称为边际生产率分配理论和产品分配的净耗竭定理。
如上所述,要素的价格是由要素的市场供求决定的。在完全竞争条件下,制造商和消费者都被动地接受市场形成的价格。
参考资料来源:百度百科-欧拉定理
不是什么平均值,就是边际值。你的例子举得完全不对,我没法帮你把你的例子修改成一个合理的例子。而且按照最一般的假定,K指的是资本,不是什么技术。最原始的生产模型F(L,K)中,只有劳动力和资本这两个生产要素。但如果你精通多元微积分,你会知道增加更多的要素,本质上没有区别(所以你当然可以加入一个新的技术要素)
这个公式用微积分很容易推导,你在任何一本中级以上的经济学原理上都找得到推到,在此不赘。关键是你要注意定理的假设和内在含义。
这个定理有这样两个个关键性假设:
1、规模报酬不变,或者说,Q=F(L,K)这个函数满足其次性,这样那个数学推导才能成立;
2、市场价格唯一,完全竞争性市场。因为是完全竞争性市场,且满足一价律,所以市场价格等于边际产出,也就是说资本报酬(利率)为MPK,劳动力报酬(工资)MPL才能成立。
最后,这个定理又叫做产品分配净尽定理,为什么这么叫呢?因为经济总产出全部分给了劳动和资本这两个要素。Q是总产出,MPK是资本价格(利率),MPK*K就是资本在生产中的所得;类似的MPL*L是劳动力在生产中所得。Q=MPL*L+MPK*K,产出(在充分竞争的市场条件下)完全的分配给了劳动力和资本两个要素,没有剩余。