将三个球随机的放入4个盒子中去,求任意三个盒子中各有一个球的概率!

这个球是否相同,我忘了,求相同与不同的两中解答!
2024-12-04 14:59:03
推荐回答(5个)
回答1:

任意三个盒子中各有一个球的概率为3/8。

解:

第一个小球任意放入一个盒子里面,概率为1;

第二个小球本可以任意放入一个盒子里面,但是由于不能和第一个小球重复,因此,只能选择剩下的3个,概率为3/4;

第三个小球,和第二个小球的道理一样,这时只能在4个里面放入剩下的两个空盒才行,概率为2/4=1/2;

由于为分步处理,用乘法原理得:P=1×3/4×1/2=3/8。

扩展资料

排列组合的加法原理和分类计数法

1、加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有mn种不同的方法,那么完成这件事共有N=m1+m2+m3+…+mn种不同方法。

2、第一类办法的方法属于集合A1,第二类办法的方法属于集合A2,……,第n类办法的方法属于集合An,那么完成这件事的方法属于集合A1UA2U…UAn。

3、分类的要求 :每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏)。

回答2:

达到题目要求必须满足:
3个球分别放入3个不同的盒子;然后恰好选中了有球的3个盒子,所以概率是:

[C(4,1)C(3,1)C(2,1)/C(4,1)^3]*[c(3,3)/c(4,3)]
=(4*3*2/64)*(1/4)=3/32

回答3:

将三个球随机的放入4个盒子中去,任意三个盒子中各有一个球的概率是三分之一

回答4:

相同:4*3/2/4^3=3/32
不同 4*3/4^3=3/16

回答5:

先求出3个球放到4个盒子中方法:3^4
3个球放到3个盒子中的放法:3^3
那么所求概率:3^3/3^4