解由sinC=(sinA+sinB)/(cosA+cosB)
即sinA+sinB=sinCcosA+sinCcosB
即sin(B+C)+sin(A+C)=sinCcosA+sinCcosB
即sinBcosC+sinCcosB+sinAcosC+sinCcosA=sinCcosA+sinCcosB
即sinBcosC+sinAcosC=0
即cosC(sinB+sinA)=0
由A,B属于(0,180°)
即(sinB+sinA)≠0
即cosC=0
即C=π/2
即三角形ABC形状是直角三角形。