f(x)=2cos²x+cosxsinx+2 ;X∈[π/6,π/3]值域为
解:f(x)=cos2x+(1/2)sin2x+3=cos2x+tanθsin2x+3=(1/cosθ)[cos2xcosθ+sin2xsinθ)]+3
=(1/cosθ)cos(2x-θ)+3【其中tanθ=1/2,cosθ=2/√5,sinθ=1/√5,θ=arctan(1/2)≈26.565⁰】
=(√5/2)cos[2x-actan(1/2)]+3当30⁰≦x≦60⁰时,f(x)单调减。
maxf(x)=f(30⁰)=(√5/2)cos(60⁰-26.565⁰)+3=3.9330
minf(x)=f(60⁰)=(√5/2)cos(120⁰-26.565⁰)+3=2.9330
故值域为[2.9330,3.9330]
f(x)=2cos^2x+cosxsinx+2
=cos(2x)+1/2sin(2x)+3
= 2√5/5cos(2x)+√5/5sin(2x)+3
=sin[arcsin(2√5/5)+2x]+3
arcsin(2√5/5)+2x>pi/2,递减
f(π/6)=sin[arcsin(2√5/5)+π/3]+3≈3.9330
f(π/3)=sin[arcsin(2√5/5)+2π/3]+3≈2.1292
值域为: [2.1292 ,3.9330]