(-1*1/2)+(-1/2*1/3)+(-1/3*1/4)+......+(-1/2011*1/2012)+(-
1/2012*1/2013)
=-(1/1×2+1/2×3+1/3×4+……+1/2012×2013)
=-(1-1/2+1/2-1/3+1/3-1/4+1/4-……+1/2012-1/2013)
=-(1-1/2013)
=-2012/2013
解:原式=-(1/(1X2)+1/(2X3)+。。。+1/(2012X2013)
=-(1-1/2+1/2-1/3。。。。+1/2012-1/2013)
=-(1-1/2013)=-2012/2013
解:
(-1)×(1/2)+(-1/2)×(1/3)+(-1/3)×(1/4)+……+(-1/2011)×(1/2012)+(-1/2012)×(1/2013)
=-[(1)×(1/2)+(1/2)×(1/3)+(1/3)×(1/4)+……+(1/2011)×(1/2012)+(1/2012)×(1/2013)]
=-[(1-1/2)+(1/2-1/3)+(1/3-1/4)+……+(1/2011-1/2012)+(1/2012-1/2013)]
=-(1-1/2+1/2-1/3+1/3-1/4+……+1/2011-1/2012+1/2012-1/2013)
=-(1-1/2013)
=-2012/2013
记住一个公式:1/mn=1/(m-n)*(1/n-1/m) 要注意符号。
本题=-(1-1/2)-(1/2-1/3)-(1/3-1/4)-........-(1/2011-1/2012)-(1/2012-2013)=-1+1/2013=-2012/2013
令a=1/2+1/3+1/4
则1+1/2+1/3+1/4=1+a
1/2+1/3+1/4+1/5=a+1/5
1+1/2+1/3+1/4+1/5=1+a+1/5
所以原式=(1+a)(a+1/5)-a(1+a+1/5)
=a(1+a)+(1+a)*1/5-a(1+a)-a*1/5
=(1+a)*1/5-a*1/5
=1/5+a*1/5-a*1/5
=1/5