观察算式2(3+1)(3^2+1)(3^4+1)(3^8+1)(3^16+1)(3^32+1)+1不用计算器能算出来吗?结果个位数字是几?

2024-12-17 01:15:49
推荐回答(3个)
回答1:

2(3+1)(3^2+1)(3^4+1)(3^8+1)(3^16+1)(3^32+1)+1
=(3-1)*(3+1)(3^2+1)(3^4+1)(3^8+1)(3^16+1)(3^32+1)+1
=(3^2-1)(3^2+1)(3^4+1)(3^8+1)(3^16+1)(3^32+1)+1
=(3^4-1)(3^4+1)(3^8+1)(3^16+1)(3^32+1)+1
=(3^8-1)(3^8+1)(3^16+1)(3^32+1)+1
=(3^16-1)(3^16+1)(3^32+1)+1
=(3^32-1)(3^32+1)+1
=(3^64-1) +1=3^643^64的个位数字是3,9,7,1的1,所以3^64的个位数字是1

回答2:

2(3+1)(3^2+1)(3^4+1)(3^8+1)(3^16+1)(3^32+1)+1
=3^64-1+1
=3^64
=(3^4)^16
=81^16
个位是1

回答3:

解: 2(3+1)(3^2+1)(3^4+1)(3^8+1)(3^16+1)(3^32+1)+1 ={2[3+1)(3-1)](3^2+1)(3^4+1)(3^8+1)(3^16+1)(3^32+1)+1}/(3-1) ={2[(3^2-1)(3^2+1)](3^4+1)(3^8+1)(3^16+1)(3^32+1)+1}/(3-1) ={2[(3^4-1)(3^4+1)](3^8+1)(3^16+1)(3^32+1)+1}/(3-1) ={2[(3^8-1)(3^8+1)](3^16+1)(3^32+1)+1}/(3-1) ={2[(3^16-1)(3^16+1)](3^32+1)+1}/(3-1) ={2[(3^32-1)(3^32+1)]+1}/(3-1) ={2(3^64-1)+1}/(3-1) =(3^64-1)+1 =3^64