证明(1⼀2)^2+(1⼀3)^2+(1⼀4)^2+......+(1⼀n)^2<1恒成立(n属于N*)

2024-12-12 02:07:00
推荐回答(1个)
回答1:

(1/2)^2+(1/3)^2+(1/4)^2+......+(1/n)^2<1*(1/2)+1/2*1/3+1/3*1/4+......+1/(n-1)*1/n
=1-1/2+1/2-1/3+1/3-1/4+......+1/(n-1)-1/n=1-1/n<1