解析:∫1/(4-x²)dx=-∫1/(x+2)(x-2)dx=-1/4∫[1/(x-2)-1/(x+2)]dx=-1/4∫1/(x-2)dx+1/4∫1/(x+2)dx=-1/4ln|x-2|+1/4ln|x+2|+C=1/4ln|(x+2)/(x-2)|+C.
原式=(1/3)∫{1/[2^2+(3x)^2]}d(3x)=1/2arctan(3x/2)+C