有正弦定理知:
AB/sinC=AC/sinB
即:
6/sin60°=AC/sin45°,求得AC=2√6
有余弦定理知:
AB^2=BC^2+AC^2-2BC*AC*cosC
即:
36=BC^2+24-2BC*2√6*1/2
=BC^2-2√6BC+24
所以:BC^2-2√6BC-12=0
BC^2-2√6BC+6=18
(BC-√6)^2=18,所以BC=3√2±√6
根据大边对大角,∠A=180°-45°-60°=75°,最大,所以BC最大,即BC>6
所以:BC=3√2+√6
∠A=180°-∠B-∠C
=180°-45°-60°
=75°
BC=AB*sinA/sinC
= 6*sin75°/sin60°
=6*[(√6+√2)/4]/(√3/2)
= √18+√6 =3√2+√6
AB:sin60=BC:sin75