(f(x+hx)/f(x))^(1/h)=e^ln[(f(x+hx)/f(x))^(1/h)]=e^[(1/h)ln(f(x+hx)/f(x))]
h→0时,f(x+hx)/f(x)→1,所以ln(f(x+hx)/f(x))~f(x+hx)/f(x)-1=[f(x+hx)-f(x)]/f(x)
所以左边=lim(h→0)e^[(1/h)ln(f(x+hx)/f(x))]=lim(h→0)e^(1/h*[f(x+hx)-f(x)]/f(x))=lim(h→0)e^[(f(x+hx)-f(x))/(hf(x))]