你好!
简便方法:用比较法比较好。an=ln(n+2)/[(a+1/n)^n];a(n+1)=ln(n+3)/[(a+1/(n+1))^(n+1)].则,a(n+1)/an=````````=``````=1/a;则,当a>1;收敛;当a
如有疑问,请追问。
求极限
limln(n+2)/[(a+1/n)^n]
lim{(a+1/n)^n}=lim{[a(1+1/an)]^na}^1/a=lim{(e^1/a)*(a^n)}=无穷大(|a|>1)或0(|a|<1)或e(a=1)或1/e(a=-1)
(|a|>1)时lim{ln(n+2)/[(a+1/n)^n]
}=1/[(n+2)*无穷大]=0
级数收敛
(|a|<1)时lim{ln(n+2)/[(a+1/n)^n]
}=无穷大/0=无穷大
级数发散
(a=1)(a=-1)时lim{ln(n+2)/[(a+1/n)^n]
}=无穷大/常数=无穷大
级数发散