Design of machine and machine elementsMachine design
Machine design is the art of planning or devising new or improved machines to accomplish specific purposes. In general, a machine will consist of a combination of several different mechanical elements properly designed and arranged to work together, as a whole. During the initial planning of a machine, fundamental decisions must be made concerning loading, type of kinematic elements to be used, and correct utilization of the properties of engineering materials. Economic considerations are usually of prime importance when the design of new machinery is undertaken. In general, the lowest over-all costs are designed. Consideration should be given not only to the cost of design, manufacture the necessary safety features and be of pleasing external appearance. The objective is to produce a machine which is not only sufficiently rugged to function properly for a reasonable life, but is at the same time cheap enough to be economically feasible.
The engineer in charge of the design of a machine should not only have adequate technical training, but must be a man of sound judgment and wide experience, qualities which are usually acquired only after considerable time has been spent in actual professional work.
Design of machine elements
The principles of design are, of course, universal. The same theory or equations may be applied to a very small part, as in an instrument, or, to a larger but similar part used in a piece of heavy equipment. In no ease, however, should mathematical calculations be looked upon as absolute and final. They are all subject to the accuracy of the various assumptions, which must necessarily be made in engineering work. Sometimes only a portion of the total number of parts in a machine are designed on the basis of analytic calculations. The form and size of the remaining parts are designed on the basis of analytic calculations. On the other hand, if the machine is very expensive, or if weight is a factor, as in airplanes, design computations may then be made for almost all the parts.
The purpose of the design calculations is, of course, to attempt to predict the stress or deformation in the part in order that it may sagely carry the loads, which will be imposed on it, and that it may last for the expected life of the machine. All calculations are, of course, dependent on the physical properties of the construction materials as determined by laboratory tests. A rational method of design attempts to take the results of relatively simple and fundamental tests such as tension, compression, torsion, and fatigue and apply them to all the complicated and involved situations encountered in present-day machinery.
In addition, it has been amply proved that such details as surface condition, fillets, notches, manufacturing tolerances, and heat treatment have a market effect on the strength and useful life of a machine part. The design and drafting departments must specify completely all such particulars, must specify completely all such particulars, and thus exercise the necessary close control over the finished product.
As mentioned above, machine design is a vast field of engineering technology. As such, it begins with the conception of an idea and follows through the various phases of design analysis, manufacturing, marketing and consumerism. The following is a list of the major areas of consideration in the general field of machine design:
① Initial design conception;
② Strength analysis;
③ Materials selection;
④ Appearance;
⑤ Manufacturing;
⑥ Safety;
⑦ Environment effects;
⑨ Reliability and life;
Strength is a measure of the ability to resist, without fails, forces which cause stresses and strains. The forces may be;
① Gradually applied;
② Suddenly applied;
③ Applied under impact;
④ Applied with continuous direction reversals;
⑤ Applied at low or elevated temperatures.
If a critical part of a machine fails, the whole machine must be shut down until a repair is made. Thus, when designing a new machine, it is extremely important that critical parts be made strong enough to prevent failure. The designer should determine as precisely as possible the nature, magnitude, direction and point of application of all forces. Machine design is mot, however, an exact science and it is, therefore, rarely possible to determine exactly all the applied forces. In addition, different samples of a specified material will exhibit somewhat different abilities to resist loads, temperatures and other environment conditions. In spite of this, design calculations based on appropriate assumptions are invaluable in the proper design of machine.
Moreover, it is absolutely essential that a design engineer knows how and why parts fail so that reliable machines which require minimum maintenance can be designed. Sometimes, a failure can be serious, such as when a tire blows out on an automobile traveling at high speeds. On the other hand, a failure may be no more than a nuisance. An example is the loosening of the radiator hose in the automobile cooling system. The consequence of this latter failure is usually the loss of some radiator coolant, a condition which is readily detected and corrected.
The type of load a part absorbs is just as significant as the magnitude. Generally speaking, dynamic loads with direction reversals cause greater difficulties than static loads and, therefore, fatigue strength must be considered. Another concern is whether the material is ductile or brittle. For example, brittle materials are considered to be unacceptable where fatigue is involved.
In general, the design engineer must consider all possible modes of failure, which include the following:
① Stress;
② Deformation;
③ Wear;
④ Corrosion;
⑤ Vibration;
⑥ Environmental damage;
⑦ Loosening of fastening devices.
The part sizes and shapes selected must also take into account many dimensional factors which produce external load effects such as geometric discontinuities, residual stresses due to forming of desired contours, and the application of interference fit joint.
Selected from” design of machine elements”, 6th edition, m. f. sports, prentice-hall, inc., 1985 and “machine design”, Anthony Esposito, charles e., Merrill publishing company, 1975.
Mechanical properties of materials
The material properties can be classified into three major headings: (1) physical, (2) chemical, (3) mechanical
Physical properties
Density or specific gravity, moisture content, etc., can be classified under this category.
Chemical properties
Many chemical properties come under this category. These include acidity or alkalinity, react6ivity and corrosion. The most important of these is corrosion which can be explained in layman’s terms as the resistance of the material to decay while in continuous use in a particular atmosphere.
Mechanical properties
Mechanical properties include in the strength properties like tensile, compression, shear, torsion, impact, fatigue and creep. The tensile strength of a material is obtained by dividing the maximum load, which the specimen bears by the area of cross-section of the specimen.
This is a curve plotted between the stress along the This is a curve plotted between the stress along the Y-axis(ordinate) and the strain along the X-axis (abscissa) in a tensile test. A material tends to change or changes its dimensions when it is loaded, depending upon the magnitude of the load. When the load is removed it can be seen that the deformation disappears. For many materials this occurs op to a certain value of the stress called the elastic limit Ap. This is depicted by the straight line relationship and a small deviation thereafter, in the stress-strain curve (fig.3.1)
. Within the elastic range, the limiting value of the stress up to which the stress and strain are proportional, is called the limit of proportionality Ap. In this region, the metal obeys hookes’s law, which states that the stress is proportional to strain in the elastic range of loading, (the material completely regains its original dimensions after the load is removed). In the actual plotting of the curve, the proportionality limit is obtained at a slightly lower value of the load than the
机器和机器零件的设计
机器设计
机器设计为了特定的目的而发明或改进机器的一种艺术。一般来讲,机器时有多种不同的合理设计并有序装配在一起的部件构成的,在最初的机器设计阶段,必须基本明确负载、元件的运动情况、工程材料的合理使用性能。负责新机器的设计最初的最重要的是经济性考虑。一般来说,选择总成本最低的设计方案,不仅要考虑设计、制造、销售、安装的成本。还要考虑服务的费用,机械要保证必要的安全性能和美观的外形。制造机器的目标不仅要追求保证只用功能的合理寿命,还要保证足够便宜以同时保证其经济的可行性。负责设计机器的工程师,不仅要经过专业的培训,而且必须是一个准确判断而又有丰富经验的人,具有一种有足够时间从事专门的实际工作的素质。
机器零件的设计
相同的理论或方程可应用在一个一起的非常小的零件上,也可用在一个复杂的设备的大型相似件上,既然如此,毫无疑问,数学计算是绝对的和最终的。他们都符合不同的设想,这必须由工程量决定。有时,一台机器的零件全部计算仅仅是设计的一部分。零件的结构和尺寸通常根据实际考虑。另一方面,如果机器和昂贵,或者质量很重要,例如飞机,那麽每一个零件都要设计计算。
当然,设计计算的目的是试图预测零件的应力和变形,以保证其安全的带动负载,这是必要的,并且其也许影响到机器的最终寿命。当然,所有的计算依赖于这些结构材料通过试验测定的物理性能。国际上的设计方法试图通过从一些相对简单的而基本的实验中得到一些结果,这些试验,例如结构复杂的及现代机械设计到的电压、转矩和疲劳强度。
另外,可以充分证明,一些细节,如表面粗糙度、圆角、开槽、制造公差和热处理都对机械零件的强度及使用寿命有影响。设计和构建布局要完全详细地说明每一个细节,并且对最终产品进行必要的测试。
综上所述,机械设计是一个非常宽的工程技术领域。例如,从设计理念到设计分析的每一个阶段,制造,市场,销售。以下是机械设计的一般领域应考虑的主要方面的清单:
①最初的设计理念 ②受力分析 ③材料的选择 ④外形
⑤制造 ⑥安全性 ⑦环境影响 ⑧可靠性及寿命
在没有破坏的情况下,强度是抵抗引起应力和应变的一种量度。这些力可能是:
①渐变力 ②瞬时力 ③冲击力 ④不断变化的力
⑤温差
如果一个机器的关键件损坏,整个机器必须关闭,直到修理好为止。设计一台新机器时,关键件具有足够的抵抗破坏的能力是非常重要的。设计者应尽可能准确地确定所有的性质、大小、方向及作用点。机器设计不是这样,但精确的科学是这样,因此很难准确地确定所有力。另外,一种特殊材料的不同样本会显现出不同的性能,像抗负载、温度和其他外部条件。尽管如此,在机械设计中给予合理综合的设计计算是非常有用的。
此外,显而易见的是一个知道零件是如何和为什麽破坏的设计师可以设计出需要很少维修的可靠机器。有时,一次失败是严重的,例如高速行驶的汽车的轮胎爆裂。另一方面,失败未必是麻烦。例如,汽车的冷却系统的散热器皮带管松开。这种破坏的后果通常是损失一些散热片,可以探测并改正过来。零件负载类型是一个重要的标志。一般而言,变化的动负载比静负载会引起更大的差异。因此,疲劳强度必须符合。另一个关心的方面是这种材料是否直或易碎。例如有疲劳破坏的地方不易使用易碎的材料。一般的,设计师要靠考虑所有破坏情况,其包括以下方面:
①应力 ②应变 ③外形 ④腐蚀 ⑤震动 ⑥外部环境破坏 ⑦紧固件的松脱
零件的尺寸和外形的选择也有很多因素。外部负荷的影响,如几何间断,由于轮廓而产生的残余应力和组合件干涉。
选自《机械元件设计》第六版,斯鲍特、普瑞特斯等,1985年和《机械设计》埃斯普特斯、查里斯、麦瑞欧出版公司,1975年。
材料的机械性能
的机械性能可以被分成三个方面:物理性能,化学性能,机械性能。
物理性能
密度或比重、温度等可以归为这一类。
化学性能
这一种类包括很多化学性能。其中包括酸碱性、化学反应性、腐蚀性。其中最重要的是腐蚀性,在外行人看来,腐蚀性被解释为在某处的零件抵抗腐蚀的能力。
机械性能
机械性能包括拉伸性能、压缩性能、剪切性能、扭转性能、冲击性能、疲劳性能和蠕变。材料的拉伸强度可以通过试件的横截面积出试件承受的最大载荷得到,这是在拉伸试验中,应力沿Y轴,应边沿X轴变化的曲线。一种材料加载时开始发生变化的初值取决于负载的大小。当负载去掉时可以看到变形消失。对于很多材料而言,在达到弹性极限的一定应力值A之前,一直表现为这样。在应力--应变图中,这是可以用线性关系来描述的。这之后又一个小的偏移。
在弹性范围内,达到应力的极限之前,应力和应变是成比例的,这被称为比例极限Ap。在这个区域,零件符合胡克定律,即应力与应变是成比例的,在弹性范围内(材料能完全恢复到最初的尺寸,当负载去掉时)。曲线中的实际点,比例极限在弹性极限处。这可以认为是材料恢复初值时落后于前者。这种影响在不含铁的材料中经常提到。
铁和镍有明显的弹性范围,而铜、锌、锡等,即使在相对低的应力下也表现为不完全弹性。实际上,能否清楚地分辩弹性极限和比例极限取决于测量设备的灵敏度。
当负载超过弹性极限时,塑性变形开始,逐渐的试件被硬化。变形比负载增加得更快时的点被称成为屈服点Q。金属开始抵抗负载转变成快速变形,这时的屈服力成为屈服极限Ay。
试件的延伸率 继续由Q到T再到,在这种塑性流动时,应力—应变关系在曲线上处于QRST区域。在点,试件破坏且这种负载称为破坏负载。最大负载S除以试件初始的截面积,被定义为这种金属的最终拉伸极限或试样的拉伸强度Au。
按逻辑说,在应力不增加的情况下,一旦超出弹性极限,金属开始屈服,并最终破坏。但是当超出弹性极限后,在纪录曲线上应增大。
这种变化主要有两个原因:
①材料的应力硬化
②由于塑性变形而引起的试件横截面积的变小
由于加工硬化,金属塑性变化越大,硬化越严重。金属拉伸越长,他的直径(横截面积)越小。直到到达点为止。点之后,减少的速率开始变化,超过了应力增加的速率,应变很大以至于在局部的某些点的面积减少,被称为颈缩。横截面积减少得非常快,以至于抗负载的能力下降,即ST阶段。破坏发生在T点。延伸率A和截面积变化率u被描述成材料的延展性和塑性:
a=(L0-L)/L0*100%
u=(A0-A)/A0*100%
在这里,L0和L分别是试件的最初和最终长度,A0和A分别是试件的最初截面积和最终截面积。
选自《金属材料的测试》
质量保证与控制
产品质量是生产中最重要的。如果放任质量恶化下去,生产者会很快发现销售量锐减,可能从而会导致产业的失败。用户期望他们买的产品质量性能好,而且如果制造商想建立并维持其信誉,必须在产品制造前制造过程中及制造过程后进行质量控制和质量保证。一般来说,质量保证包括所有的活动,其包括质量建立和质量控制。质量保证可以被分为三个主要领域,他们如下所述:
①制造之前的原材料的检查
②在制造加工过程中的质量控制
③制造之后的质量保证
生产制造后的质量控制包括保证书和面对产品用户的服务。
生产制造之前的原材料检验
质量保证常常在实际生产制造之前就开始了。这些都是生产者在供应原材料、散件或配件的车间里进行检验。生产制造公司的原材料检验员到供应厂并且检查原材料及于制造的另配件。原材料检验为生产者提供了一次机会,那就是在原料及散件被运到生产车间之前先进行挑选淘汰。原料检察员的责任是去检查原料和零件是否达到设计规格并且淘汰那些未达到特殊指标的原料。原料检验有很多于检查产品相同的检验。其如下所述:
①目测
②冶金测试
③尺寸测试
④损伤检验
⑤性能检验
目测
目测检验一种产品或原料的某些特征,如颜色、纹理、表面光洁度或部件的总体外观,从而判断其是否具有明显的缺损。
冶金测试
冶金测试常常是原料间严厉的一个很重要的部分,尤其是像棒料、建筑材料毛坯一些原材料。金属测试包含所有主要的检验类型,其中有目测,化学检验,光谱检验和机械性能检验,其包括硬度、伸缩性能、剪切性能、压缩性能和合成成分的光谱分析。冶金测试既可用于成品件也可用于预制件。
尺寸检验
质量控制的一些领域是重要的生产件的要求尺寸。尺寸在检验过程中,像其在生产过程中一样重要。如果这些零件是为总成供应的,那尺寸尤其严格。一些尺寸在生产车间用标准测量工具进行检验,像特种接头、造型和需求的功能标准度量。符合尺寸规格对所制造多部件的互换性和对多部件成功组装成复杂的装置,如汽车、轮船、飞机和其他多部件产品都地极其重要的。
损伤检验
在一些情况下,对原材料或零部件采取损伤测试的原始测验是很必要的。特别是涉及到大批的原材料时。例如,在被运到生产车间作最终机器之前,对铸件进行X-射线、电磁离子、染色渗透剂技术的探伤是很必要的,又对机器总成的电子或持久运作测试而确定的规格,是无损测试的又一例证。有时,对材料及零件的测试是很必要的,但由于无损测试的花费和成本及时间不是任何时候都允许的。
例如,有压力测试决定在设计中其是否安全。损伤测试经常用于设计样机的测试,而不是原材料或零件的常规检验。一旦设计达到了所希望的材料强度,通常对零件做进一步的损伤测试是不必要的,除非他们确实存在疑点。
性能测试
性能测试在零部件被其他产品被安装之前,检查部件的功能,尤其是那些机械构造复杂的部件。例如电子设备零件,飞机和汽车发动机,泵、阀及其他需要在装运和最后安装前进行性能测验的机械系统。
选自《现代材料和制造工艺》
汽车起重机的不同类型
根据汽车吊的使用情况,像:工作的范围,工作的自然情况。他们的构造装备体现着不同的理念。
1、 工作范围(不同的设计)
当起重机工作在一个小范围内(仓库,码头,戏台等)告诉是没有必要的。根据这种应用,我们的装置最高速为35km/h。
驱动装置布置在后面,集成了车辆和起重机的控制,这种类型称为:单驱起重机。当起重机在大场地内工作时,有几个较远的工作点,高速轴就是必要的了。随之而来的,布置在车辆后端的单驱动是不可能的。由于这个原因,提供两个驱动是必要的,相对的允许像传统卡车那样驱动车辆。这种类型的起重机,在构造上必须装备一个特殊的变速箱,对起重机允许像传统车辆那样的前进和后退。我们这种类型的起重机装备了一个特殊的变速箱,可以提供一个前进速度和一个后退速度,一般其最大运输速度为:55/60km/h,这种类型称为双驱起重机。
2、 地面情况
当起重机操作困难时,在平整的路面上(体育场,码头,仓库等)起构造是传统概念的单驱动的运输工具。
如果起重机离开路面移动到恶劣路况下(脏且沙软的路面)不平的,其构造根据“全工况路面”的限定标准而建立,其要求实现:
双驱甚至是三驱;两种速度范围,有一个特别慢的值;不同驱动轴的转换系统;轴端的特殊轴承;特殊的制动;提供低压的大尺寸的轮胎,在软地面上运转;独立的大车轮;悬空的地面监视和清晰的构造是非常重要的;安装及驾驶服务
所有的主要点是绝对必要的对于在无路的情况下的各种类型的车辆,有一个良好的运行。
当然起重机不得不在各种路况下工作,为此其装备了双驱。
(附图见英文资料)
哥们查收吧 送过去了