极限四则运算法则的前提是两个极限存在,当有一个极限本身是不存在的,则不能用四则运算法则。
设limf(x)和limg(x)存在,且令limf(x)=A,limg(x)=B,则有以下运算法则:
其中,B≠0;c是一个常数。
扩展资料:
极限的性质:
1、唯一性:若数列的极限存在,则极限值是唯一的,且它的任何子列的极限与原数列的相等。
2、有界性:如果一个数列’收敛‘(有极限),那么这个数列一定有界。
但是,如果一个数列有界,这个数列未必收敛。例如数列 :“1,-1,1,-1,……,(-1)n+1”
3、保号性:若
(或<0),则对任何m∈(0,a)(a<0时则是 m∈(a,0)),存在N>0,使n>N时有
(相应的xn 参考资料来源:百度百科-极限
使用极限的四则运算法则时,应注意它们的条件,当每个函数的极限都存在时,才可使用和、差、积的极限法则;当分子、分母的极限都存在,且分母的极限不为零时,才可使用商的极限法则.
在数学中,当一级运算(加减)和二级运算(乘除)同时出现在一个式子中时,它们的 运算顺序是先乘除,后加减,如果有括号就先算括号内后算括号外,同一级运算顺序是从左到右,这样的运算叫四则运算。四则是指 加法、 减法、 乘法、 除法的计算法则。一道四则运算的算式并不需要一定有四种运算符号,一般指由两个或两个以上运算符号及括号,把多数合并成一个数的运算。加减互为逆运算;乘除互为逆运算;乘法是加法的简便运算。