∵x1+1/x2=x2+1/x3,∴x1-x2=1/x3-1/x2=(x2-x3)/(x2x3),
∴x2x3=(x2-x3)/(x1-x2)。······[1]
∵x2+1/x3=x3+1/x4,∴x2-x3=1/x4-1/x3=(x3-x4)/(x3x4),
∴x3x4=(x3-x4)/(x2-x3)。······[2]
∵x3+1/x4=x4+1/x5,∴x3-x4=1/x5-1/x4=(x4-x5)/(x4x5),
∴x4x5=(x4-x5)/(x3-x4)。······[3]
······
同理,有:
x(n-1)xn=[x(n-1)-xn]/[x(n-2)-x(n-1)]。······[n-2]
xnx1=(xn-x1)/[x(n-1)-xn]。······[n-1]
x1x2=(x1-x2)/(xn-x1)。······[n]
将上述的[1]、[2]、[3]、[4]、······、[n-2]、[n-1]、[n]左右分别相乘,得:
(x1x2x3x4x5······xn)^2=1。