1×2+2×3+3×4+4×5+5×6+6×7+7×8+8×9··········+100×101等于多少?

2024-10-28 21:29:12
推荐回答(5个)
回答1:

过程仅供参考,答案需要验证

回答2:

n(n+1) = n² + n
于是原式可以化成1+2+3+……+100 + 1² + 2² + 3² + ……+100²。
前面是等差数列 和为5050
而后面的1² + 2² + …… + 100²,可以用数学归纳法证明这个和为Sn = n(n+1)(2n+1)÷6
所以后面半边和为100 * 101* 201 ÷ 6 = 338350
加上前面的5050 就等于343400

回答3:

1×2+2×3+3×4+4×5+5×6+6×7+7×8+8×9··········+100×101
=1/3×100×101×102
=343400

1×2+2×3+3×4+4×5+5×6+6×7+7×8+8×9··········+n(n+1)
=1/3×n×(n+1)×(n+2)

回答4:

n(n+1)(n+2)/3

回答5:

343400这是最嘉答案