数学题:已知a-b=2+根号3,b-c=2-根号3,求a^2+b^2+c^2-ac-bc的值

2024-12-30 00:19:40
推荐回答(3个)
回答1:

a-b=2+根号3
b-c=2-根号3
两式相加 a-c=4
2*(a^2+b^2+c^2-ab-bc-ca)
=a^2-2ab+b^2+a^2-2ac+c^2+b^2-2bc+c^2
=(a-b)^2+(a-c)^2+(b-c)^2
=7+4√3+16+7-4√3
=30 30/2=15

回答2:

-b=2+根3
b-c=2-根3
所以 a-c=4
a^2+b^2+c^2-ab-ac-bc
=1/2*(2a^2+2b^2+2c^2-2ab-2ac-2bc)
=1/2*[a^2-2ab+b^2+a^2-2ac+c^2+b^2-2bc+c^2]
=1/2*[(a-b)^2+(a-c)^2+(b-c)^2]
=1/2*30 =15

回答3:

见图