解答:
看通项即可
(n²+1)/(n²-1)
=(n²-1+2)/(n²-1)
=(n²-1)/(n²-1)+2/(n²-1)
=1+2/(n-1)(n+1)
=1+1/(n-1)-1/(n+1)
∴ (2^2+1)/(2^2-1)+(3^2+1)/(3^2-1)+…+(2005^2+1)/(2005^2-1).
=(1+1/1-1/3)+(1+1/2-1/4)+(1+1/3-1/5)+.............+(1+1/2004-1/2006)
=(1+1+1+...........+1)+(1-1/3+1/2-1/4+1/3-1/5+.......+1/2004-1/2006)
2004个
=2004+(1+1/2-1/2005-1/2006)
以下化简即可。
通式:1+(1/n)-1/(n+2) n从1开始取
展开:2005+(1-1/3+1/2-1/4+1/3-1/5+....+1/2004-1/2006+1/2005-1/2007)
上式可以化简,约去相同项,得2005+1+1/2-1/2006-1/2007
(n^2+1)/(n^2-1)=1+2/(n^2-1)=1+1/(n-1)-1/(n+1),n从2到2005相加得:2005+1+1/2-1/2006