设0<α<π,sin+cos=7⼀13,则(1-tanα)⼀(1+tanα)的值

2024-12-31 19:05:34
推荐回答(3个)
回答1:

0<α<π,
sinα+cosα=7/13
sin²α+cos²α=1
sinα=12/13
cosα=-5/13

(1-tanα)/(1+tanα)
=(cosα-sinα)/(cosα+sinα)
=(-17/13)/(7/13)
=-17/7

回答2:

∵(sina+cosa)²=1+2sinacosa=49/169
∴2sinacosa=-120/169
∴(sina-cosa)²=1-2sinacosa=289/169
又∵sina-cosa=√2(√2/2*sina-√2cosa)
=√2sin(a-π/4)
又0∴-π/4∴-√2/2即-1∴sina-cosa=17/13
则(1-tana)/(1+tanα)
=(1-sina/cosa)/(1+sina/cosa)
=(cosa-sina)/(cosa+sina)
=(-17/13)/(7/13)
=-17/7

回答3:

设0<α<π,sin+cos=7/13 平方
1+2sinacosa=49/169
2sinacosa=-120/169
所以sina>0 cosa<0 即 π/2<α<π

sin+cos=7/13
sinacosa=-60/169
解得sina=12/13 cosa=-5/13

(1-tanα)/(1+tanα)
=(cosa-sina)/(cosa+sina)
=(-17/13)/(7/13)
=-17/7