解x³-(2+根号3)x²+(1+2根号3)x-(根号3)+5
=x³-(1+根号3)x²-x²+(1+2根号3)x-(根号3)+5
=x²(x-(1+根号3))-x²+(1+2根号3)x-(根号3)+5 由x=(根号3)+1
=-x²+(1+2根号3)x-(根号3)+5
=x(-x+1+2根号3)-√3+5
=(√3+1)(-√3-1+1+2√3)-√3+5
=(√3+1)(√3)-√3+5
=3+√3-√3+5
=8
x=√3+1
x³-(2+根号3)x²+(1+2根号3)x-(根号3)+5
=x³-(1+x)x²+(2x-1)x-x+6
=x^3-x^3-x^2+2x^2-2x+6
=x^2-2x+6
=(x-1)^2+5
=8
由已知得:x-1=√3
∴原式=x³-(2+√3)x²+(1+2√3)x-√3+5
=x³-(1+x)x²+(2x-1)x-(x-1)+5
=x³-x²-x³+2x²-x-x+1+5
=x²-2x+1+5
=(x-1)²+5
=(√3)²+5
=8
结果等于8