y=x是解.用常数变易法:设y=cx.y'=c+c'x.y''=c"x+2c' 代入: x^2lnx(c"x+2c')-x(c+c'x)+cx=0, x^2lnx(c"x+2c')-c'x^2=0.xlnxc"+(2lnx-1)c'=0,c'=lnlnx-2lnx+C1.c=∫lnlnxdx-2xlnx+2x+C1x+C2通解为:y=x(∫lnlnxdx-2xlnx+2x+C1x+C2)