如图,平行四边形ABCD中,点E是AD的中点,连接BE并延长交CD的延长线于点F。连接CE,当CE平分角BCD,求ED=FD.

2025-01-07 00:36:03
推荐回答(1个)
回答1:

∵四边形ABCD是平行四边形,
∴AB∥CD,
∴∠BAD=∠FDE,
又∵点E是AD的中点,
∴AE=DE.
在△ABE与△DFE中,
∵∠BAD=∠FDE,AE=DE,∠BEA=∠FED,
∴△ABE≌△DFE.
∴DF=AB,
又∵CD=AB,
∴CF=2CD,
∵CE平分∠BCD,
∴∠BCE=∠FCE.
又∵AD∥BC,
∴∠BCE=∠DEC,
∴∠FCE=∠DEC,
∴DE=CD,
∵CD=DF,
∴DE=DF.