计算(1+1⼀2)(1+1⼀2^2)(1+1⼀2^4)(1+1⼀2^8)+1⼀2^15

2025-01-03 07:44:31
推荐回答(4个)
回答1:

原式=1/(1-1/2)*(1-1/2)(1+1/2)(1+1/2^2)(1+1/2^4)(1+1/2^8)+1/2^15
=2(1-1/2^2)(1+1/2^2)(1+1/2^4)(1+1/2^8)+1/2^15
=2(1-1/2^4)(1+1/2^4)(1+1/2^8)+1/2^15
=2(1-1/2^8)(1+1/2^8)+1/2^15
=2(1-1/2^16)+1/2^15
=2-1/2^15+1/2^15
=2

回答2:

(1+1/2)(1+1/2^2)(1+1/2^4)(1+1/2^8)+1/2^15

=2*(1-1/2)(1+1/2)(1+1/2^2)(1+1/2^4)(1+1/2^8)+1/2^15
=2*(1-1/2^2)(1+1/2^2)(1+1/2^4)(1+1/2^8)+1/2^15
=2*(1-1/2^4)(1+1/2^4)(1+1/2^8)+1/2^15
=2*(1-1/2^8)(1+1/2^8)+1/2^15
=2*(1-1/2^16)+1/2^15
=2-1/2^15+1/2^15
=2

回答3:

1.5 *2 *3 *5 *7.5=337.5

回答4:

(1-1/2)(1+1/2)(1+1/2^2)(1+1/2^4)(1+1/2^8)/(1-1/2)+1/2^15
=(1-1/2^16)/(1-1/2)+1/2^15
=2