时间序列分析
一般是Box-Jenkins的方法
把因变量的滞后项作为自变量
y_t = b0 + b1*y_{t-1} + b2*y_{t-2} + ... + bp*y_{t-p} + u_t
这样的模型确定滞后阶数p的方法是
1. y_t满足covariance-stationarity 也就是对于任意t 均值不变 方差不变 协方差只是间隔项数的函数
2. u_t是白噪声而不出现序列相关
3. p的确定遵循parsimony的原则 国内应该翻译为“精简”
一般构造AIC和 SBC两个指标来比较 这两个指标越小越好
AIC = T * ln(残差平方和) + 引入p阶的惩罚
SBC相似
也就是说首先残差平方和应该越小说明自变量也就是滞后阶数的解释能力强 不过呢引入的滞后项数越多 残差平方和应该越来越小 所以要看有效性 便加入一个惩罚 使得模型精简 原理和adjusted R^2一样
AIC适合小样本 SBC适合大样本
然后这两个信息标准都在一般的回归软件中列了出来
比较其中最小的就是合适的p阶滞后
但是一定要保证残差是白噪声
计量经济学中的滞后期有什么用。应该怎么确定滞后期?