7、求由曲面z=x^2+2y^2 以及 z=6-2x^2-y^2 所围成立体的体积

2024-12-13 01:20:38
推荐回答(1个)
回答1:

解:∵解方程组z=x²+2y²与z=6-2x²-y²,得x²+y²=2
∴所求立体在xoy面上投影区域为D={(x,y)lx²+y²≤2}
故 所求立体体积=∫∫[(6-2x²-y²)-(x²+2y²)]dxdy
=∫∫[6-3(x²+y²)]dxdy
=∫<0,2π>dθ∫<0,√2>(6-3r²)rdr (应用极坐标变换)
=2π∫<0,√2>(6r²-3r³)dr
=2π(2r³-3r^4/4)│<0,√2>
=2π(4√2-3)