其实,很简单的:
∫(0→1) xƒ(x²) dx
=(1/2)∫(0→1) ƒ(x²) dx²(变量代换t=x²)
=(1/2)∫(0→1) ƒ(t) dt
由已知条件∫(0→x) ƒ(t) dt = cos(x²)知,∫(0→1) ƒ(t) dt=cos1
所以∫(0→1) xƒ(x²) dx=0.5*cos1
∫(0→x) ƒ(t) dt = cos(x²),两边都对x求导
ƒ(x) = - 2xsin(x²)
ƒ(x²) = - 2x²sin(x⁴)
∫(0→1) xƒ(x²) dx
= ∫(0→1) x[- 2x²sin(x⁴)] dx
= (- 2)(1/4)∫(0→1) sin(x⁴) d(x⁴)
= (- 1/2)[- cos(x⁴)]:(0→1)
= (1/2)[cos(1) - cos(0)]
= (1/2)cos(1) - 1/2