①正弦定理:a/sinA=b/sinB=c/sinC=2R,∴a=2RsinA,b=2RsinB,c=2RsinC
而acosB+bsinA=c,∴2RsinAcosB+2RsinBsinA=2RsinC,∴sinAcosB+sinAsinB=sinC
而sinC=sin[π-(A+B)]=sin(A+B)=sinAcosB+cosAsinB
∴sinAcosB+sinAsinB=sinAcosB+cosAsinB
∴sinAsinB=cosAsinB,而00,∴sinA=cosA
而0②余弦定理:a²=b²+c²-2bccosA=b²+c²-√2*bc=16,∴b²+c²=√2*bc+16
而b²+c²≥2bc,∴√2*bc+16≥2bc,∴bc≤16/(2-√2)=8(2+√2)
∴S△ABC=1/2*bc*sinA=√2/4*bc≤√2/4*8(2+√2)=4+4√2
由acosB-bcosA=(3/5)c及正弦定理得:
sinAcosB-sinBcosA=(3/5)sinC=(3/5)sin(A+B)
即5sinAcosB-5sinBcosA=3(sinAcosB+cosAsinB)
移项得:5sinAcosB-3sinAcosB=3cosAsinB+5sinBcosA
合并同类项得:2sinAcosB=8sinBcosA
∴ sinAcosB/sinBcosA=tanA/tanB=8/2=4.