在三角形abc 中 ab=ac 延长ab到点d 使bd=ad 取ab的中点e 连接cd和ce 求证

cd=2ce
2024-11-25 20:56:06
推荐回答(1个)
回答1:

证明:
延长CE至F,使EF=CE,连接FA
因为 AE=BE,角AEF=角BEC
所以 三角形AEF全等于三角形BEC
所以 角F=角FCB
所以 AF//BC
所以 角FAC=180-角ACB
因为 角DBC=180-角ABC,角ACB=角ABC
所以 角FAC=角DBC
因为 三角形AEF全等于三角形BEC
所以 FA=BC
因为 角ACB=角ABC
所以 AB=AC
因为 BD=AB
所以 AC=BD
因为 FA=BC,角FAC=角DBC
所以 三角形FAC全等于三角形DBC
所以 CD=CF
因为 FE=CE
所以 CD=2CE