解不等式X^2-(3a-2)X+2a^2-a-3<0,求十字相乘的化简

2024-12-21 12:40:52
推荐回答(2个)
回答1:

x²+(-3a+2)x+(2a-3)(a+1)<0

1 -(2a-3)
×
1 -(a+1)
[x-(2a-3)][x-(a+1)]<0
然后比较2a-3和a+1大小即可

回答2:

X²-(3a-2)X+2a²-a-3<0
解:∵2a²-a-3=(2a-3)(a+1)
 ∴X²-(3a-2)X+2a²-a-3
  =[x-(2a-3)][x-(a+1)]<0
①当2a-3>a+1,即a>4时
 X²-(3a-2)X+2a²-a-3<0的解为:(a+1,2a-3)
②当2a-3>a+1,即a=4时
 x²<0 无解
 X²-(3a-2)X+2a²-a-3<0无解
③当2a-3 X²-(3a-2)X+2a²-a-3<0的解为:(2a-3,a+1)