由题意知道a^2+1/a^2=14,a^4+1/a^4=194
设x1=a^4+1/a,x2=a+1/a^4为一元2次方程的2根,有
x1+x2=194+4=198,x1x2=2+a^5+1/a^5=(a+1/a)(a^4+1/a^4)-(a+1/a)(a^2+1/a^2-1)
=4*194-4*(14-1)=724
所以所求为一元2次方程x^2-198x+724=0的2根,由求根公式解出所求为99+-根号下977