1、原式=(a-b)的n次方·(a-b)²-(a-b)²
=(a-b)²[(a-b)的n次方-1]
2、提取(a-1)的2n次方
原式=(a-1)的2n次方·[1/(a-1)+2+﹙a-1﹚](通分)
=(a-1)的2n次方·[a²/(a-1)]
=a²·(a-1)的2n-1次方
3、原式=(x²-3)²+(x²-3)(x-3)+(x²-3)(x-3)+(x-3)²
=(x²-3)(x²-3+x-3)+(x-3)(x²-3+x-3)
=(x²+x-6)(x²+x-6)
=(x²+x-6)²
希望满意采纳。