(1⼀1+2)+(1⼀1+2+3)+(1⼀1+2+3+4)+......+(1⼀1+2+3+...+10)怎么算

2024-12-29 09:48:04
推荐回答(2个)
回答1:

  1+2+....+n=n(n+1)/2
  (1/1+2)+(1/1+2+3)+(1/1+2+3+4)+......+(1/1+2+3+...+10)
  =2/2*3+2/3*4+......2/10*11
  =2(1/2-1/3+1/3-1/4+......+1/10-1/11)
  =2(1/2-1/11)
  =1-2/11=9/11

回答2:

=(1+2)+(1+2+3)+(1+2+3+4)+……+(1+2+3+4+5……+9+10)
=3+6+10+15+21+28+36+45+55
=219