函数f﹙x﹚=根号二﹢根号下x눀﹣2x﹢3分之一的值域

2024-12-04 07:44:57
推荐回答(1个)
回答1:

对√(x^2-2x+3),x∈R,
f(x)=√2+1/√[(x-1)^2+2],
在根号内x=1时有最小值,为√2,
1/√[(x-1)^2+2]最大为√2/2,
故f(x)最大为3√2/2,当x→±∞时,
第二项为0,f(x)→√2
∴函数值域:f(x)∈(√2,3√2/2].
.