当n趋向于无穷大时,求(1+2눀+3눀+…+n눀)⼀n대 极限

2025-01-04 03:58:05
推荐回答(2个)
回答1:

1+2²+3²+…+n²=n(n+1)(2n+1)/6

所以原式=1/3

回答2:

lim[n→+∞](1+2²+3²+…+n²)/n³
=lim[n→+∞]n(n+1)(2n+1)/(6n^3)
=lim[n→+∞]1(1+1/n)(2+1/n)/6
=1/3