我记得我回答过了,怎么没了。。。。
(n+1)^3-n^3=3n^2+3n+1
.......
3^3-2^3=3*(2^2)+3*2+1
2^3-1^3=3*(1^1)+3*1+1
两边做和
(n+1)^3-1=3∑n^2+3∑n+n
所以∑n^2=[(n+1)^3-1-3n(n+1)/2-n]/3
你自己化简下吧。
S1=1^2=1=1(1+1)(2*1+1)/6
S2=1^2+2^2=5=2(2+1)(2*2+1)/6
S3=1^2+2^2+3^2=14=3(3+1)(2*3+1)/6
…………
Sn=n(n+1)(2n+1)/6
Sn+1=Sn+(n+1)^2
=n(n+1)(2n+1)/6+(n+1)^2
=(n+1)[n(2n+1)+6(n+1)]/6
=(n+1)(2n^2+n+6n+6)/6
=(n+1)(2n^2+7n+6)/6
=(n+1)(2n^2+4n+3n+6)/6
=(n+1)[2n(n+2)+3(n+2)]/6
=(n+1)(n+2)(2n+3)/6
=(n+1)[(n+1)+1][2(n+1)+1]/6
数学归纳法证毕
用1楼的数学归纳法,2楼的累加法都可,鉴定完毕