因为(a-1)²+|ab-2|=0,(a-1)²和|ab-2|都是非负数(或者说大于等于0的数)
而两个数相加为0,当且仅当他们都为0
(a-1)²=0,a-1=0,a=1
|ab-2|=0,∵a=1 ,ab-2=0 ∴b=2
将a=1,b=2带入
1/ab=1/(1×2)=1-1/2
1/(a+1)(b+1)=1/(2×3)=1/2-1/3
1/(a+2)(b+2)=1/(3×4)=1/3-1/4
∴1/ab+1/(a+1)(b+1))+1/(a+2)(b+2)+...+1/(a+2005)(b+2005)
=1-1/2+1/2-1/3+1/3-1/4+...+1/2006-1/2007
=1-1/2007 (中间的-1/2+1/2......可以抵掉)
=2006/2007
a-1=0;a=1;
ab-2=0;b=2;
1/ab+1/(a+1)(b+1))+1/(a+2)(b+2)+...+1/(a+2005)(b+2005)
=1/2+1/2*3+1/3*4+...+1/2006*2007
=1-1/2+1/2-1/3+1/3-1/4+...+1/2006-1/2007
=1-1/2007
=2006/2007