已知sinα=1⼀3,α∈(兀⼀2,兀),cosβ=-3⼀5,β=-3⼀5,β∈(兀,3兀⼀2),求

2024-12-26 10:07:24
推荐回答(2个)
回答1:

解:∵α∈(π/2,π),β∈(π,3π/2)
∴α为第二象限角,β为第三象限角
又sinα=1/3,cosβ=-3/5
则cosa=-√(1-sin²α)=-2√2/3
sinβ=-√(1-cos²β)=-4/5
∴sin(α+β)=sina*cosβ+cosα*sinβ
=(1/3)×(-3/5)+(-2√2/3)×(-4/5)
=(8√2-3)/15
cos(α-β)=cosα*cosβ+sinα*sinβ
=(-2√2/3)×(-3/5)+(1/3)×(-4/5)
=(6√2-4)/15

回答2:

∵sinα=1/3,α∈(兀/2,兀),cosβ=-3/5,β∈(兀,3兀/2)
∴cosα=-2√2/3,sinβ=-4/5
sin(α+β)=sinαcosβ+cosαsinβ=-1/5+8√2/15=(-3+8√2)/15

cos(α-β)=cosαcosβ+sinαsinβ=2√2/5-4/15=(-4+6√2)/15