xsinxcosxdx的不定积分

2024-11-29 09:22:27
推荐回答(2个)
回答1:

解:
∫xsinxcosxdx
=1/2 ∫xsin2xdx
=1/2 [-x(cos2x)/2+1/2 ∫cos2xdx]
=-x(cos2x)/4+1/8 sin2x+C

回答2:

∫xsinxcosxdx=1/2∫xsin2xdx=-1/4∫xdcos2x=-1/4(xcos2x-∫cos2xdx)=-1/4xcos2x 1/8sin2x C