分析,
x²+y²-4x+1=0,
∴(x-2)²+y²=3,它的轨迹方程就是圆。
根据圆的参数方程,
设x-2=√3cosa
y=√3sina,a∈[0,2π]
∴x=√3cosa+2
y-x
=√3sina-√3cosa-2
=√6sin(a-π/4)-2
由于0≦a≤2π
∴-√6-2≦sin(a-π/4)≦√6-2
∴(y-x)的取值范围是[-√6-2,√6-2].
x²+y²-4x+1=0
=>x²+y²-4x+4=3
=>(x-2)²+y²=3
x-2=3^(1/2)cosa
x=3^(1/2)cosa+2
y=3^(1/2)sina
y-x=3^(1/2)sina-3^(1/2)cosa-2
=3^(1/2)(sina-cosa)-2
=3^(1/2)2^(1/2)(2^(1/2)/2sina-2^(1/2)/2cosa)-2
=6^(1/2)(sinacos(π/4)-cosasin(π/4))-2
=6^(1/2)sin(a-π/4)-2
sinx的最小值为-1,最大值为1
y-x的取值范围为[-6^(1/2)-2,6^(1/2)-2]